Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The remarkable complexity of a topologically ordered many-body quantum system is encoded in the characteristics of its anyons. Quintessential predictions emanating from this complexity employ the Fibonacci string net condensate (Fib SNC) and its anyons: sampling Fib-SNC would estimate chromatic polynomials while exchanging its anyons would implement universal quantum computation. However, physical realizations remained elusive. We introduce a scalable dynamical string net preparation (DSNP) that constructs Fib SNC and its anyons on reconfigurable graphs suitable for near-term superconducting processors. Coupling the DSNP approach with composite error-mitigation on deep circuits, we create, measure, and braids Fibonacci anyons; charge measurements show 94% accuracy, and exchanging the anyons yields the expected golden ratioϕwith 98% average accuracy. We then sample the Fib SNC to estimate chromatic polynomial atϕ + 2 for several graphs. Our results establish the proof of principle for using Fib-SNC and its anyons for fault-tolerant universal quantum computation and aim at a classically hard problem.more » « lessFree, publicly-accessible full text available December 1, 2026
-
Quantum computing testbeds exhibit high-fidelity quantum control over small collections of qubits, enabling performance of precise, repeatable operations followed by measurements. Currently, these noisy intermediate-scale devices can support a sufficient number of sequential operations prior to decoherence such that near term algorithms can be performed with proximate accuracy (like chemical accuracy for quantum chemistry problems). While the results of these algorithms are imperfect, these imperfections can help bootstrap quantum computer testbed development. Demonstrations of these algorithms over the past few years, coupled with the idea that imperfect algorithm performance can be caused by several dominant noise sources in the quantum processor, which can be measured and calibrated during algorithm execution or in post-processing, has led to the use of noise mitigation to improve typical computational results. Conversely, benchmark algorithms coupled with noise mitigation can help diagnose the nature of the noise, whether systematic or purely random. Here, we outline the use of coherent noise mitigation techniques as a characterization tool in trapped-ion testbeds. We perform model-fitting of the noisy data to determine the noise source based on realistic physics focused noise models and demonstrate that systematic noise amplification coupled with error mitigation schemes provides useful data for noise model deduction. Further, in order to connect lower level noise model details with application specific performance of near term algorithms, we experimentally construct the loss landscape of a variational algorithm under various injected noise sources coupled with error mitigation techniques. This type of connection enables application-aware hardware codesign, in which the most important noise sources in specific applications, like quantum chemistry, become foci of improvement in subsequent hardware generations.more » « less
-
Instruction scheduling is a key compiler optimization in quantum computing, just as it is for classical computing. Current schedulers optimize for data parallelism by allowing simultaneous execution of instructions, as long as their qubits do not overlap. However, on many quantum hardware platforms, instructions on overlapping qubits can be executed simultaneously through global interactions. For example, while fan-out in traditional quantum circuits can only be implemented sequentially when viewed at the logical level, global interactions at the physical level allow fan-out to be achieved in one step. We leverage this simultaneous fan-out primitive to optimize circuit synthesis for NISQ (Noisy Intermediate-Scale Quantum) workloads. In addition, we introduce novel quantum memory architectures based on fan-out.Our work also addresses hardware implementation of the fan-out primitive. We perform realistic simulations for trapped ion quantum computers. We also demonstrate experimental proof-of-concept of fan-out with superconducting qubits. We perform depth (runtime) and fidelity estimation for NISQ application circuits and quantum memory architectures under realistic noise models. Our simulations indicate promising results with an asymptotic advantage in runtime, as well as 7–24% reduction in error.more » « less
-
Abstract Quantum chemistry is a key application area for noisy‐intermediate scale quantum (NISQ) devices, and therefore serves as an important benchmark for current and future quantum computer performance. Previous benchmarks in this field have focused on variational methods for computing ground and excited states of various molecules, including a benchmarking suite focused on the performance of computing ground states for alkali‐hydrides under an array of error mitigation methods. State‐of‐the‐art methods to reach chemical accuracy in hybrid quantum‐classical electronic structure calculations of alkali hydride molecules on NISQ devices from IBM are outlined here. It is demonstrated how to extend the reach of variational eigensolvers with symmetry preserving Ansätze. Next, it is outlined how to use quantum imaginary time evolution and Lanczos as a complementary method to variational techniques, highlighting the advantages of each approach. Finally, a new error mitigation method is demonstrated which uses systematic error cancellation via hidden inverse gate constructions, improving the performance of typical variational algorithms. These results show that electronic structure calculations have advanced rapidly, to routine chemical accuracy for simple molecules, from their inception on quantum computers a few short years ago, and they point to further rapid progress to larger molecules as the power of NISQ devices grows.more » « less
An official website of the United States government
